Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution

Songrun Liu^{*}, George Mason University **Zachary Ferguson**^{*}, George Mason University Alec Jacobson, University of Toronto Yotam Gingold, George Mason University (*Joint first authors)

Computer Science

Songrun Liu

TEXTURES

Color Map

original mesh 4M triangles simplified mesh and normal mapping 500 triangles

Normal Map

simplified mesh 500 triangles

Displacement Map

Geometry Images [Gu et al. 2002]

2D PARAMETERIZATION

2D PARAMETERIZATION

2D PARAMETERIZATION

DISCONTINUITIES IN GEOMETRY IMAGES

Before

After

DISCONTINUITIES IN GEOMETRY IMAGES

Before

After

DISCONTINUITIES IN GEOMETRY IMAGES

Before

After

Seam Erasure

Seam Erasure

Seam Aware Decimation

Seam Erasure

Seam Aware Decimation

Seam Straightener

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Maps

Seam Straightener

Seam Aware Decimation

Weight Maps

INPUT:	OUTPUT:

RELATED WORKS

RELATED WORKS

RELATED WORKS

12
RELATED WORKS

RELATED WORKS

Seamless

Liu, Ferguson, Jacobson and Gingold

Liu, Ferguson, Jacobson and Gingold

Bilinear interpolation:

$$Bilerp(s,t) = (1-t)((p_{10} - p_{00})s + p_{00}) + t((p_{11} - p_{01})s + p_{01})$$

Bilinear interpolation:

Bilerp
$$(s,t) = (1-t)((p_{10} - p_{00})s + p_{00}) + t((p_{11} - p_{01})s + p_{01})$$

This is linear in pand quadratic in edge parameter γ :

 $\operatorname{Bilerp}(e) = m(e(\gamma))\mathbf{p}$

Bilinear interpolation:

$$Bilerp(s,t) = (1-t)((p_{10} - p_{00})s + p_{00}) + t((p_{11} - p_{01})s + p_{01})$$

This is linear in pand quadratic in edge parameter γ :

Bilerp(e) =
$$m(e(\gamma))\mathbf{p} = \gamma^2 \cdot a(\gamma)^{\mathsf{T}}\mathbf{p} + \gamma \cdot b(\gamma)^{\mathsf{T}}\mathbf{p} + c(\gamma)^{\mathsf{T}}\mathbf{p}$$

Bilinear interpolation:

Bilerp
$$(s,t) = (1-t)((p_{10} - p_{00})s + p_{00}) + t((p_{11} - p_{01})s + p_{01})$$

This is linear in pand quadratic in edge parameter γ :

Bilerp(e) =
$$m(e(\gamma))\mathbf{p} = \gamma^2 \cdot a(\gamma)^{\mathsf{T}}\mathbf{p} + \gamma \cdot b(\gamma)^{\mathsf{T}}\mathbf{p} + c(\gamma)^{\mathsf{T}}\mathbf{p}$$

 $\gamma \in [0, 1], a, b, c$ are sparse column vectors of coefficients for e, and \mathbf{p} is the column vector of all samples in the texture.

Liu, Ferguson, Jacobson and Gingold

 p_{11}

 p_{10}

 p_{00}

$$\int_0^1 \|m(e_1)\mathbf{p} - m(e_2)\mathbf{p}\|^2 d\gamma$$

Seamless

$$\mathbf{p}^{\mathsf{T}}\left(\int_{0}^{1} \|m(e_{1}) - m(e_{2})\|^{2} d\gamma\right) \mathbf{p}$$

Seamless

Liu, Ferguson, Jacobson and Gingold

 \mathbf{p}^{T}

 M_{e_1,e_2}

Liu, Ferguson, Jacobson and Gingold

,

 \mathbf{p}

$\mathbf{p}^{\mathsf{T}} M \mathbf{p} = \sum_{e_1, e_2 \in \text{seams}} \mathbf{p}^{\mathsf{T}} \left(\right)$

 M_{e_1,e_2}

POSSIBLE SOLUTIONS

$\mathbf{p}^{\mathsf{T}} M \mathbf{p} = 0$

Seamless

Liu, Ferguson, Jacobson and Gingold

POSSIBLE SOLUTIONS

Our total energy is:

 $E(\mathbf{p}) =$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p_0}\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_0\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_0\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_0\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_0\|^2$$

$$E(\mathbf{p}) = w_{\text{change}} \|\mathbf{p} - \mathbf{p}_0\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_0\|^2 + w_{C^1} E_{C^1}(\mathbf{p})$$

$$E(\mathbf{p}) = \underset{\text{Original}}{w_{\text{change}}} \|\mathbf{p} - \mathbf{p}_{\mathbf{0}}\|^2 + w_{\nabla} \|\nabla \mathbf{p} - \nabla \mathbf{p}_{\mathbf{0}}\|^2 + w_{C^1} E_{C^1}(\mathbf{p})$$

Our total energy is:

Subject to $E_{\text{seam}}(\mathbf{p}) = \mathbf{p}^{\mathsf{T}} M \mathbf{p} = 0$

Our total energy is:

Subject to $E_{\text{seam}}(\mathbf{p}) = \mathbf{p}^{\mathsf{T}} M \mathbf{p} = 0$

We impose the null space constraint via the penalty method by adding: $w_{\rm seam} E_{\rm seam}({f p})$

Our total energy is:

Subject to $E_{\text{seam}}(\mathbf{p}) = \mathbf{p}^{\mathsf{T}} M \mathbf{p} = 0$

We impose the null space constraint via the penalty method by adding: $w_{\rm seam} E_{\rm seam}({f p})$

with weights

 $w_{\text{seam}} \gg w_{\text{change}}, w_{\nabla}, w_{C^1}$

Liu, Ferguson, Jacobson and Gingold

Seam Erasure: Results

After

Seamless

After

CONTRIBUTIONS

Seam Straightener

Seam Aware Decimation

Weight Texture Maps

CONTRIBUTIONS

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Texture Maps

ORIGINAL MESH

GARLAND AND HECKBERT [1998]

GARLAND AND HECKBERT [1998]

MAYA DECIMATION

OUR APPROACH

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

Before

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

• Each face defines a plane (e.g. 5-D for [x, y, z, u, v])

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

- Each face defines a plane (e.g. 5-D for [x, y, z, u, v])
- Edge error metric = sum of squared distances to face's planes

Based on Garland and Heckbert [1998]'s n-D Quadric Error Metric

- Each face defines a plane (e.g. 5-D for [x, y, z, u, v])
- Edge error metric = sum of squared distances to face's planes
- New vertex position minimizes the edge error metric and keeps the edge error metric.

LENGTH RATIO CRITERIA

LENGTH RATIO CRITERIA

LENGTH RATIO CRITERIA

- Merging $e_1 f_1$ and $e_2 f_2$ will cause the stripe texture to be misaligned across the seam.
- Length Ratio Criteria:

LINK CONDITION

TWO UNIFIABLE EDGES

THREE UNIFIABLE EDGES

Seam Aware Decimation: Results

DECIMATION RESULT

DECIMATION RESULT

Liu, Ferguson, Jacobson and Gingold

R

1

R

1

R

1

CONTRIBUTIONS

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Maps

CONTRIBUTIONS

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Maps

SEAM STRAIGHTENER

SEAM STRAIGHTENER

Liu, Ferguson, Jacobson and Gingold

SEAM STRAIGHTENING RESULTS

Liu, Ferguson, Jacobson and Gingold

UN-COLLAPSIBLE EDGES

Example	# Un-Collapsible Edges Before	# Un-Collapsible Edges After
Chimp	805	171
Hercules	626	290
Animal	369	17
Wolf	374	173

UN-COLLAPSIBLE EDGES

# Un-Collapsible Edges Before	# Un-Collapsible Edges After
805	171
626	290
369	17
374	173
	# Un-Collapsible Edges Before 805 626 369 374
CONTRIBUTIONS

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Maps

CONTRIBUTIONS

Seam Erasure

Seam Straightener

Seam Aware Decimation

Seamless

Seamless

SKINNING WITH HIGH-RESOLUTION WEIGHTS

Seamless

SKINNING WITH HIGH-RESOLUTION WEIGHTS

Seamless

MODERN GPU PIPELINE

MODERN GPU PIPELINE

WEIGHTS MAP AS TEXTURES

WEIGHTS MAP AS TEXTURES

SKIN COMPLICATED MODEL WITH WEIGHT TEXTURES

SKIN COMPLICATED MODEL WITH WEIGHT TEXTURES

Original Decimated Tessellated Deformed

RESOLUTION OF WEIGHT MAPS

WEIGHT PAINTING

WEIGHT PAINTING

WEIGHT PAINTING

DUAL QUATERNION SKINNING WITH WEIGHT MAPS

FREE-FORM DEFORMATION WITH WEIGHT MAPS

Seam Erasure

Seam Erasure

Seam Aware Decimation

Seamless

Seam Erasure

Seam Aware Decimation

Seam Straightener

Seam Erasure

Seam Straightener

Seam Aware Decimation

Weight Maps

LIMITATIONS AND FUTURE WORK

- Limitations:
 - Low resolution result is constant
 - Non-overlapping parametrization
 - Tangent space normal maps
- Future Work:
 - Minimize the bilinear reconstruction error of the displacement and geometry images
 - Volumetric textures (trilinear interpolation)

SEAMLESS: SEAM ERASURE AND SEAM-AWARE DECOUPLING OF SHAPE FROM MESH RESOLUTION

Project page and Source code: https://cragl.cs.gmu.edu/seamless/

Contact:

CraG

Zachary Ferguson, <u>zfergus@nyu.edu</u> Songrun Liu, <u>sliu11@gmu.edu</u>

Computer Science

dgp dynamic graphics project

UNIVERSITY OF TORONTO

We are grateful to Guilin Liu and Jyh-Ming Lien, Keenan Crane, and Turbosquid users Sumatra3d, Deniz Ozemre, SpinQuad1976, Pabong, Tornado Studio, and mnphmnnn.

This work was supported by the US NSF, Google, NSERC, and Adobe Systems Inc.